Understanding the Morphological Mismatch Between Magnetic Susceptibility Source and T2* Image

نویسندگان

  • Zikuan Chen
  • Vince Calhoun
چکیده

BACKGROUND AND PURPOSE Recent research has shown that a T2* image (either magnitude or phase) is not identical to the internal spatial distribution of a magnetic susceptibility (χ) source. In this paper, we examine the reasons behind these differences by looking into the insights of T2*-weighted magnetic resonance imaging (T2*MRI) and provide numerical characterizations of the source/image mismatches by numerical simulations. METHODS For numerical simulations of T2*MRI, we predefine a 3D χ source and calculate the complex-valued T2* image by intravoxel dephasing in presence and absence of diffusion. We propose an empirical α-power model to describe the overall source/image transformation. For a Gaussian-shaped χ source, we numerically characterize the source/image morphological mismatch in terms of spatial correlation and FWHM (full width at half maximum). RESULTS In theory, we show that the χ-induced fieldmap is morphologically different from the χ source due to dipole effect, and the T2* magnitude image is related to the fieldmap by a quadratic transformation in the small phase angle regime, which imposes an additional morphological change. The numerical simulations with a Gaussian-shaped χ source show that a T2* magnitude image may suffer an overall source/image morphological shrinkage of 20% to 25% and that the T2* phase image is almost identical to the fieldmap thus maintaining a morphological mismatch from the χ source due to dipole effect. CONCLUSION The morphological mismatch between a bulk χ source and its T2* image is caused by the 3D convolution during tissue magnetization (dipole effect), the nonlinearity of the T2* magnitude and phase calculation, and the spin diffusion effect. In the small phase angle regime, the T2* magnitude exhibits an overall morphological shrinkage, and the T2* phase image suffers a dipole effect but maintains the χ-induced fieldmap morphology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...

متن کامل

Approximate resistivity and susceptibility mapping from airborne electromagnetic and magnetic data, a case study for a geologically plausible porphyry copper unit in Iran

This paper describes the application of approximate methods to invert airborne magnetic data as well as helicopter-borne frequency domain electromagnetic data in order to retrieve a joint model of magnetic susceptibility and electrical resistivity. The study area located in Semnan province of Iran consists of an arc-shaped porphyry andesite covered by sedimentary units which may have potential ...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Inverse Mapping of BOLD fMRI: 4D Magnetic Susceptibility (χ) Tomography

Background: A brain magnetic state (in terms of magnetic susceptibility distribution χ) can be detected by T2*-weighted MRI (T2*MRI) undergoing a cascade of data transformations. The MRI transformations cause distortions (or spatial morphing), which may be undone by solving the inverse imaging or mapping problem. Upon having a dataset acquired from Blood Oxygenation Level-Dependent (BOLD) funct...

متن کامل

ارزیابی منشاء پذیرفتاری مغناطیسی با استفاده از تیمارCBD و تصاویر میکروکت اسکن در برخی از خاک‌های استان فارس

Magnetic susceptibility (χ) measurements are widely used for the evaluation of soil profile development. Fourteen soil profiles were studied in a relatively wide range of climatic conditions in Fars Province. Citrate-bicarbonate-dithionite (CBD) extraction and micro CT-Scan images were used to evaluate the source of magnetic susceptibility. The results showed that soil samples lost 23 to 91 per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013